Что мешает внедрению искусственного интеллекта в российской медицине?

13-04-2021
Как искусственный интеллект помогает решать ключевые задачи медицинской отрасли и какие блокеры существуют на пути его внедрения рассказывает руководитель по работе с медицинским сектором Yandex.Cloud

В 2019 году в России утвердили Национальную стратегию развития искусственного интеллекта, в документе шла речь в том числе о сфере здравоохранения.

Также в марте этого года стало известно о планах Минцифры РФ открыть доступ к медицинским данным россиян разработчикам технологий искусственного интеллекта в сфере диагностики заболеваний. Кажется, что медицинская сфера готова применять ИИ-технологии, однако существуют барьеры, которые мешают реализации успешных кейсов.

Евгений Михайленко, руководитель по работе с медицинским сектором Yandex.Cloud, расскажет, как искусственный интеллект помогает решать ключевые задачи медицинской отрасли, какие блокеры существуют на пути внедрения и как использовать ИИ для клинической практики наиболее эффективно.

Реклама

В каких областях применяют ИИ-сервисы

Интеллектуальные системы на базе искусственного интеллекта могут помочь увеличить эффективность и качество процессов практически на каждом этапе клиентского пути пациента, от обращения и сбора анамнеза до лечения и контроля результатов.

ИИ-помощники

Один из самых популярных сценариев на сегодняшний день — интеграция голосовых помощников на базе ИИ в диалоговые сценарии при общении с пациентами. В основном такие сценарии связаны с административными задачами (запись на прием, уточнение времени работы учреждения или график конкретного врача и т.д.). Нестандартный пример использования голосовых технологий: на период самоизоляции минздрав Московской области запустил робота-информатора, который обзванивал граждан и контролировал их состояние на карантине.

Внедрение речевых технологий помогают клиникам избежать человеческого фактора при общении с пациентом, сэкономить за счет сокращения телефонных линий, принимать звонки в любое время суток и снизить скорость ожидания ответа. При этом в большинстве систем используют технологии обработки естественного языка NLP (Natural Language Processing), которые позволяют роботу вести диалог подобно оператору. Однако пока не все сценарии реализуют с помощью речевых технологий — дело не только в доверии, но и в том, что существуют правовые ограничения.

Реклама

Точность диагностики

Медицинская диагностика — пожалуй, единственная область, где прочно закрепилось внедрение технологии на базе ИИ. Консалтинговая компания Frost & Sullivan подсчитала, что “умные системы” способны повысить точность принимаемых медицинских ��ешений на 30-40%, при этом снизить расходы клиник на медобслуживание пациентов.

Точность диагностики важна на ранних этапах разных патологий, в том числе онкологических заболеваний. Зачастую выявить рак на начальной стадии мешает низкая квалификация медицинских кадров или человеческий фактор, вызванный высокой нагрузкой специалистов. Современные ИИ-сервисы способны анализировать медицинские изображения и находить на них настолько ранние признаки заболевания, которые практически невозможно заметить на врачебном исследовании.

Такими разработками занимается, например, RADLogics. В России компания использовала свою платформу для быстрого выявления (COVID-19) на основе анализа снимков компьютерной томографии. Алгоритмы системы способны отличать патологию вирусной пневмонии, вызванной SARS-CoV-2, от бактериальной пневмонии. Передовиком в этой области выступает Радиология Москвы, которая уже использует решения на базе ИИ. Также стоит отметить, что во многих регионах РФ уже идут пилоты или проходит промышленное внедрение СППВР с ИИ.

Разработка препаратов

С помощью технологий ИИ проводят микроскопический анализ в лабораториях, изучают эффективность медицинских препаратов, разрабатывают анатомические протезы, исследуют вирусную природу, в том числе для разработки вакцин. Так, на доклинической фазе разработки лекарств ИИ могут использовать для выбора препаратов-кандидатов с помощью обработки цифровых данных или для секвенирования ДНК. Применяя алгоритмы глубокого обучения, исследователи на этапе тестирований могут испытать лекарства с помощью цифровых двойников без привлечения пациентов. Однако таких примеров по использованию ИИ в промышленной эксплуатации до сих пор немного.

Реклама

Какие блокеры при внедрении искусственного интеллекта существуют

Ограниченные ресурсы

Для проведения качественных исследований в области той же медицинской диагностики необходимы структурированные и размеченные данные. На практике
большое количество информации до сих пор хранится в “сыром” виде. В медицинских картах пациентов иногда невозможно найти полную историю болезни, с учетом всех поведенческих привычек и принимаемых препаратов. На такой неполной информации обучать алгоритм нельзя в отличие от других индустрий применение ИИ в медицине требует стопроцентной точности, потому что цена ошибки в подобных исследованиях очень высока.

Да,отдельные эксперименты с технологией проводят активно — так, на медицинском портале Pubmed только за 2020 год опубликовано более 15 тысяч публикаций, связанных с применением ИИ. Однако в большинстве этих исследований применялись уже отобранные датасеты, которые редко можно собрать в реальной медицинской практике. Для решения этой проблемы необходимо вовлечение медицинских учреждений в подготовку данных.

Скептицизм медицинского сообщества и пациентов

Как медицинский персонал, так и пациенты на деле пока с осторожностью относятся к диагнозам и прогнозам ИИ. Это в том числе связано с представлением новых сервисов: некоторые разработчики заявляют о максимальной точности ИИ. Однако такие заявления бывают преувеличены, потому что результаты исследований ИИ-сервисов завязаны на ограниченном объеме данных.

Реклама

К тому же, некоторые проекты с участием ИИ останавливаются из-за рисков, связанных с чувствительностью медицинских данных пациентов и строгой регламентацией со стороны регуляторов. Для разработки алгоритмов нужны вычислительные мощности, которых зачастую нет у медицинских учреждений. Для обеспечения безопасности многие компании-разработчики предлагают размещать информацию для работы с ИИ в облачных платформах, которые имеют необходимые сертификаты безопасности, в том числе соответствие УЗ-1 в рамках ФЗ-152 (Федеральный закон “О персональных данных”).

Правовые стандарты

В российском законодательстве до сих пор не существует определенных стандартов, которые регламентируют работу медицинских ИИ-сервисов. Это касается и подготовки датасетов, и проведения клинических и технических испытаний, и стандартов по практическому использованию ИИ клиниками. Однако сегодня государственных проектов по внедрению ИИ в клинические процессы становится больше — уже есть эксперименты Департамента здравоохранения Москвы, которые могут положить начало формированию новых правовых стандартов в этой области.

Как достичь максимума при внедрении ИИ

Бережно относиться к сбору данных

Необходимо повышать качество используемых ИТ-решений и контролировать жизненный путь данных от их появления до использования в обучении ИИ: где они формируются, как связаны между собой.При этом организовывать работу с данными стоит как внутри клиники, так и за ее пределами для формирования большего количества датасетов.

Реклама

Выбрать наиболее выгодную стратегию: нанимать внешних специалист?ов или развивать внутреннюю команду

Для решения стратегических задач можно обратиться к компании-разработчику или же собирать собственную команду. Для этого нужно формировать новые роли в компании для внедрения ИИ: инженеров данных, аналитиков, разработчиков моделей. При этом часть задач (например, администрирование инфраструктуры) можно решать за счет использования ресурсов облачного провайдера.

Современные облачные платформы позволяют экономить на обучении модели для разработки ИИ-системы: в облаке можно арендовать большие мощности, а при необходимости отключить использование ресурсов. Помимо этого, можно увеличить скорость разработки ИИ: провайдеры выпускают решения, в которых уже заложены необходимые инструменты для полного цикла разработки ИИ-решений.

Привлекать к разработкам сотрудников

Потенциальными пользователями ИИ-технологий зачастую являются сами врачи. Необходимо вовлекать их как специалистов в своей области еще на этапе проработки концепции и анализа гипотез использования искусственного интеллекта. Они смогут не только объективно оценить ценность использования технологии, но и стать помощниками для автоматизации других процессов в медучреждении.


Реклама