Ожирение является серьезной проблемой общественного здравоохранения с поражением более 1,9 млрд людей, что составляет 39% взрослого населения [1]. Если эта тенденция будет продолжаться, к 2025 г. распространенность глобального ожирения достигнет 18% у мужчин и превысит 21% у женщин; тяжелое ожирение превысит 6% у мужчин и 9% у женщин [2]. Ожирение связано с множеством патологий, среди которых сердечно-сосудистые заболевания, метаболический синдром и онкология [3]. В последних исследованиях сообщается, что смертность от ожирения увеличивается в логарифмически-линейной зависимости с индексом массы (ИМТ) тела, а связь ожирения с более высокой смертностью отмечается на всех континентах [4]. Другим тревожным фактором является рост частоты детского ожирения, которое является фактором риска формирования ожирения у взрослых [5].
Некоторые различия, наблюдаемые при ожирении и изменении веса в популяции, можно объяснить традиционными факторами риска, однако недавно исследователи стали связывать с ожирением новый фактор — кишечную микробиоту. Этот вопрос привлек внимание исследователей в последнее десятилетие как элемент, который непосредственно влияет на состояние нашего здоровья. Состав этого микробного сообщества зависит от особенностей организма хозяина, но он также может быть модифицирован экзогенными и эндогенными факторами [6]. Эти бактерии-симбионты играют важную роль не только в физиологических процессах, например, в пищеварении, но также способны вмешиваться в метаболизм, поскольку могут увеличить процент усвоения энергии из рациона и принимать участие в регуляции композиции жировой ткани [7]. Различные бактерии также могут вызывать воспаление. Все эти процессы связаны с ожирением и нарушениями обмена веществ. Ведется множество исследований по изучению участия кишечной микробиоты в патогенезе многих заболеваний, таких как сахарный диабет 1 и 2 типов, кардиоваскулярные заболевания, болезнь Альцгеймера и др.
Согласно Turnbaugh и др. кишечную микробиоту следует рассматривать как набор генетических факторов, которые вместе с генотипом хозяина и образом жизни способствуют ожирению [8]. Накопленные сведения показали, что микроорганизмы кишечника могут регулировать расширение жировой массы через их ферментативные продукты и опосредуют подавление индуцированного голодом жирового фактора [9]. Считается, что изменение состава и численности микробиоты кишечника объясняет воспалительные, метаболические заболевания и даже дисфункции центральной нервной системы [10].
Роль Firmicutes/Bacteroidetes в патогенезе ожирения
Кишечник колонизируют три основных типа бактерий: Firmicutes, Bacteroidetes и менее обильно — Actinobacteria. Доказано, что нарушения нормального баланса кишечных микробных популяций способствуют развитию ожирения как у людей, так и у животных [1]. В одном из первых исследований, посвященных изучению потенциальной роли микробов в кишечнике в увеличении веса хозяина, Bäckhead и др. сравнивали микробиоту от трех групп мышей: стерильных мышей, мышей, которые имели нормальную флору кишечника, а также стерильных мышей, кишечник которых был колонизирован микроорганизмами от мышей с нормальной микробиотой [11]. Мыши с нормальной микробиотой имели на 42% больше общего жира, чем стерильные мыши, несмотря на то, что стерильные мыши потребляли на 29% больше еды. Колонизация нормальными кишечными микробами приводила к увеличению содержания жира в организме у мышей на 60%, что сопровождалось развитием резистентности к инсулину. Дальнейшее исследование показало, что у этих мышей увеличивалось усвоение моносахаридов из кишечника по сравнению со стерильными мышами [12]. Авторы обнаружили у них двукратное утолщение капилляров в эпителии тонкого кишечника. Это может указывать на усиленный кровоток и увеличение доставки моносахаридов в печень, что приводит к увеличению отложения жира [11, 12].
Еще большее увеличение содержания жира в организме наблюдалось у стерильных мышей, кишечник которых был колонизирован слепокишечным материалом от генетически предрасположенных к ожирению мышей. Это показывает, что фенотип ожирения является «передаваемым признаком», зависящим от состава донорской микробиоты [13]. Это было подтверждено более поздним исследованием, в котором кишечная микробиота от мышей-близнецов с нормальным и избыточным весом переносилась на стерильных мышей, что приводило к увеличению общей массы тела и количества жира, а также формированию метаболических фенотипов, связанных с ожирением, у мышей, колонизированных микробами близнецов. После этих исследований велась работа над выявлением микробных популяций, которые могут быть связаны с увеличением веса [14].
Среди последних исследований по изучению профиля микробиоты у пациентов с ожирением имеется 11 интересных исследований, в которых сравнивали микробиоту у людей с различными индексами массы тела. В первом опубликованном исследовании было отмечено, что бактериальное разнообразие значительно больше у пациентов с ожирением по сравнению с людьми, имеющими нормальную массу тела [15]. Было показано, что соотношение Firmicutes/Bacteroidetes (F/B) было выше у пациентов с ожирением, а также у пациентов с ИМТ > 25 [16]. В соответствии с этими результатами в другом исследовании также отмечалось, что
Первоначальные исследования на людях также подтверждают данный факт, поскольку более низкие уровни Bacteroidetes были идентифицированы у людей с ожирением [18]. Было также установлено, что уровни бактероидов увеличиваются после потери веса в сочетании с низкокалорийными диетами и коррелируют с процентной потерей массы тела, а не с различиями в калорийности диеты [18]. В дополнительных исследованиях выявлено снижение уровня Firmicutes в ответ на уменьшение потребления углеводов. Тем не менее не все исследования дали однозначные результаты, поэтому определение роли в патогенезе ожирения F/B остается активной областью изучения [4].
Влияние короткоцепочечных жирных кислот на метаболизм
Микробиота кишечника ответственна за разрушение неперевариваемых пищевых питательных веществ, таких как пектин, целлюлоза и устойчивые крахмалы. Ферментация этих питательных веществ в дистальном отделе кишечника приводит к получению короткоцепочечных жирных кислот (КЖК), главным образом бутирата, пропионата и ацетата. Каждый из них поглощается человеческим кишечником и вносит приблизительно 200 ккал в день (согласно раннему исследованию, КЖК могут обеспечить до 10% ежедневных калорийных потребностей для человеческого организма) в общую энергию организма. КЖК являются ключевым источником энергии для кишечного эпителия и печени [18] и, следовательно, влияют на многие метаболически важные процессы, включая печеночный глюконеогенез и липогенез [15, 19], барьерную функцию кишечника [4, 11], подвижность кишечника [16] и иммунную систему. Важно отметить, что переваривание устойчивых крахмалов с соответствующим увеличением концентрации КЖК, как было показано, улучшает насыщение и связано с улучшением показателей уровней глюкозы в крови и холестерина [6, 9].
Бутират является важным энергетическим субстратом для кишечного эпителия, тогда как пропионат и ацетат используются в качестве субстратов для липогенеза и глюконеогенеза в печени и периферических тканях [20]. Изучение микробиоты мышей, колонизированных Bacteroides thetaiotaomicron и M. smithii, показало связь между избыточным продуцированием КЖК и повышенным уровнем ожирения. Люди с лишним весом также имеют более высокие уровни КЖК [21, 22], в частности пропионата [22]. Однако последующие исследования показали, что диетические добавки с КЖК могут способствовать улучшению гомеостаза глюкозы и чувствительности к инсулину и могут фактически препятствовать развитию ожирения. Например, Z. Gao и др. обнаружили, что диета с высоким содержанием жиров вместе с бутиратом предотвращает развитие резистентности к инсулину и ожирение у мышей [23]. H. V. Lin и др. аналогичным образом установили, что добавление диеты с высоким содержанием жиров вместе с бутиратом или пропионатом нивелирует последствия высокожировой диеты [24]. Очевидные противоречия между этими и более ранними исследованиями могут быть связаны с тем, что КЖК действуют не только в качестве источников энергии, а также как сигнальные молекулы и оказывают множество других воздействий на хозяина, включая влияния на гормональную систему и процессы воспаления [14, 24]. Например, КЖК модулируют секрецию глюкагоноподобного пептида 1 и 2 (ГПП-1, ГПП-2) и пептида YY (PYY) из энтероэндокринных L-клеток кишечного эпителия, а также стимулируют выработку гастроингибиторного пептида (ГИП) [25, 26]. В исследовании H. V. Lin и др. пероральное введение бутирата натрия было связано со значительно повышенными уровнями ГПП-1 и ГИП в плазме, меньшим увеличением PYY и увеличением инсулина плазмы [24].
Влияние бактериальных липополисахаридов на формирование ожирения
Достоверно известно, что ожирение связано с хроническим вялотекущим воспалением [4, 6]. Из исследований известно, что потеря веса у пациентов с ожирением приводит к уменьшению воспалительных биомаркеров [4, 5] и улучшению чувствительности к инсулину [13, 26]. В исследованиях на грызунах было показано, что бактериальные липополисахариды (ЛПС) могут способствовать развитию воспаления и инсулинорезистентности. Было обнаружено, что у мышей, получавших диету с высоким содержанием жиров, наблюдалось двукратное увеличение уровня ЛПС в плазме — метаболическая эндотоксемия. Теми же авторами было выяснено, что у мышей, содержащихся в условиях диеты с высоким содержанием жиров, и мышей, получавших непрерывную подкожную инфузию ЛПС, была одинаковая реакция: гипергликемия натощак, гиперинсулинемия, увеличение массы тела [28]. В отдельном исследовании была обнаружена сильная корреляция между повышенным уровнем ЛПС и уменьшением количества Bifidobacterium spp., а также показано, что повышение уровня бифидобактерий с использованием специфического пребиотика — олигофруктозы (OFS) приводит к снижению уровня провоспалительных цитокинов в плазме и уменьшению веса тела и висцеральной жировой массы [29]. Более того, диетическая добавка с OFS улучшает сытость у людей [30]. Наблюдалось уменьшение уровня грелина, уменьшение PYY и потеря веса при ожирении у людей [31].
Роль метаногенных археев в патогенезе ожирения и нарушения метаболизма
Метаногенные археи являются обязательными анаэробами, которые метаболизируют простые субстраты до метана (CH4) для производства клеточной энергии. Большая часть метаногенов в кишечнике человека (преобладающий метаноген в кишечнике человека M. smithii) может использовать водород для превращения двуокиси углерода в метан [32]. Кишечные метаногены необычны тем, что их метаболизм увеличивается в присутствии продуктов из других кишечных микробов [28], поскольку они используют водород, полученный соседними микробами в качестве субстрата для получения метана [33]. Кроме того, есть предположение, что путем очистки водорода, производимого соседними микробами, и производства метана («эффект стока») M. smithii предотвращает образование водорода, что способствует увеличению ферментации полисахаридов соседними микробами [26]. Все это приводит к увеличению производства КЖК и ожирению [30, 32]. Исследования на грызунах показали, что колонизация кишечника метаногенами может напрямую влиять на метаболизм и увеличение веса у хозяина. В продольном исследовании связи уровня M. smithii с весом тела было обнаружено, что у крыс, получавших диету с высоким содержанием жиров, количество M. smithii увеличилось. Масса тела крыс перестала расти, когда животные были переведены на нормальный рацион. Возврат к высокожировой диете привел к дальнейшему увеличению веса крыс и увеличению числа
Роль метаногенов в метаболизме у человека и участие их в снижении веса менее понятна и остается предметом значительных дискуссий. H. Zhang и др. обнаружили высокие уровни метаногенов у людей с ожирением, в отличие от людей с нормальной массой тела [32]. В другом исследовании было обнаружено значительное увеличение количества метаногенов у людей с ожирением по сравнению с людьми, имеющими нормальный вес. Интересно, что у людей с ожирением, перенесших различные операции по снижению веса, отмечалась значительно уменьшенное количество метаногенов. В проведенном исследовании было обнаружено, что повышенные уровни M. smithii были связаны с увеличением массы тела и увеличением ИМТ у детей [31]. Напротив, в других исследованиях были обнаружены повышенные уровни метаногенов у людей с нормальной или низкой массой тела [34]. Было выдвинуто предположение, что повышенные уровни метаногенов у людей с нормальной массой тела могут представлять собой адаптивный ответ в виде улучшения способности к усвоению энергии.
Тестирование дыхания на метан использовалось как косвенная мера оценки колонизации кишечника метаногенами у людей. Крупное исследование населения показало, что субъекты, у которых обнаруживался метан и водород при дыхательных тестах, имели значительно более высокий ИМТ и значительно более высокий процент жировых отложений [19]. К тому же производство метана в кишечнике связано с нарушенной толерантностью к глюкозе [26]. Было доказано, что метанообразующие люди с сахарным диабетом 1 типа характеризуются более низкими показателями гликемического контроля, чем люди с отрицательными дыхательными тестами [35]. Интересно, что снижение уровня метана в дыхательных тестах и значительное улучшение HbA
Заключение
По мере того как распространенность ожирения во всем мире продолжает увеличиваться, растет и количество вопросов касательно этой темы. В представленном литературном обзоре сосредоточено внимание на роли микробиоты кишечника в формировании ожирения и нарушении метаболизма. Хотя многие из проанализированных исследований экспериментальные, они демонстрируют несколько механизмов, с помощью которых микробиота кишечника может изменять обмен веществ и влиять на увеличение веса. Благодаря крупномасштабным исследованиям, демонстрирующим связь между микробиотой и метаболическими состояниями, был достигнут значительный прогресс в понимании факторов, влияющих на ожирение. Несмотря на то, что микробиота представляет собой лишь одну часть этиологической «головоломки» ожирения, существует явная необходимость в дальнейшем изучении роли микробиоты в нарушении метаболизма и ожирении. Понимание механизмов связи ожирения с кишечной микробиотой позволит воздействовать на указанные факторы патогенеза, последовательно подавляя синтез условно-патогенных и патогенных микроорганизмов, связанных с риском повышения массы тела, и заселяя представителей нормальной микрофлоры кишечника.
Литература
- Castaner O., Goday A., Park Y. M. et al. The Gut Microbiome Profile in Obesity: A Systematic Review // Int J Endocrinol. 2018. Vol. 2018. P. 9.
- Obesity and Overweight [Электронный ресурс]. URL: http://omsk-https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (дата обращения 18/01/2019).
- Angelantonio E. Di., Bhupathiraju Sh. N., Wormser D. et al. Body-mass index and all-cause mortality: individual participant- data meta-analysis of 239 prospective studies in four continents // The Lancet. 2016. Vol. 388 (10046). P. 776–786.
- Le Chatelier E., Nielsen T., Qin J. et al. Richness of human gut microbiome correlates with metabolic markers // Nature. 2013. Vol. 500 (7464). P. 541–546.
- Tang W. H. W., Kitai T., Hazen S. L. Gut microbiota in cardiovascular health and disease // Circulation Research. 2017. Vol. 120 (7). P. 1183–1196.
- Million M., Richet H., Carrieri P. et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii // International Journal of Obesity. 2012. Vol. 36 (6). P. 817–825.
- Anhê F. F. Varin T. V., Schertzer J. D. et al. The gut microbiota as a mediator of metabolic benefits after bariatric surgery // Canadian Journal of Diabetes. 2017. Vol. 41 (4). 439–447.
- Turnbaugh P. J., Ley R. E., Hamady M. et al. The human microbiome project: exploring the microbial part of ourselves in a changing world // Nature. 2007. Vol. 449 (7164). P. 804–810.
- Thomas S. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists // Cancer Res. 2017. Vol. 77 (8). P. 1783–1812.
- Cani P. D., Osto M., Geurts L. et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity // Gut Microbes. 2012. Vol. 3 (4). P. 279–288.
- Million M., Angelakis E., Maraninchi M. et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli // Int J Obes (Lond). 2013. Vol. 37 (11). P. 1460–1466.
- Backhed F., Ding H., Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage // ProcNatl Acad Sci USA. 2004. Vol. 101 (44). P. 15718–15723.
- Gaci N., Borrel G., Tottey W. et al. Archaea and the human gut: new beginning of an old story // World J Gastroenterol. 2014. Vol. 20 (43). P. 16062–16078.
- Turnbaugh P. J., Ley R. E., Hamady M. et al. The human microbiome project: exploring the microbial part of ourselves in a changing world // Nature. 2007. Vol. 449 (7164). P. 804–810.
- Angelakis E., Armougom F., Carrière F. et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity // PLoS One. 2013. Vol. 10 (9). e0137784.
- Lin S. W., Freedman N. D., Shi J. et al. Beta-diversity metrics of the upper digestive tract microbiome are associated with body mass index // Obesity. 2015. Vol. 23 (4). P. 862–869.
- Ley R. E. Bäckhed F., Turnbaugh P. et al. Obesity alters gut microbial ecology // Proc Natl Acad Sci USA. 2005. Vol. 102 (31). P. 11070–11075.
- Ley R. E., Turnbaugh P. J., Klein S. et al. Microbial ecology: human gut microbes associated with obesity // Nature. 2006. Vol. 444 (7122). P. 1022–1023.
- Mathur R., Amichai M., Chua K. S. et al. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat // J Clin Endocrinol Metab. 2013. Vol. 198 (1). P. 698–702.
- McNeil N. I. et al. The contribution of the large intestine to energy supplies in man // Am J Clin Nutr. 1984. Vol. 378 (39). P. 338–342.
- Fernandes J., Su W., Rahat-Rozenbloom S. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans // Nutr Diabetes. 2014. Vol. 4 (6). Р. 121.
- Schwiertz A., Taras D., Schäfer K. et al. Microbiota and SCFA in lean and overweight healthy subjects // Obesity (Silver Spring). 2010. Vol. 18 (5). Р. 190–195
- Gao Z., Yin J., Zhang J. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice // Diabetes. 2009. Vol. 58 (6). Р. 1509–1517.
- Lin H. V., Frassetto A., Edward J. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms // PLoS One. 2012. Vol. 7 (4). e35240.
- Besten D. G., Bleeker A., Gerding A. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation // Diabetes. 2015. Vol. 68 (4). P. 2398–2408.
- Tolhurst G., Heffron H., Lam Y. S. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2 // Diabetes. 2012. Vol. 61 (2). P. 364–371.
- Kopp H. P., Kopp C. W., Festa A. et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese Patients // Arterioscler Thromb Vasc Biol. 2003. Vol. 23 (2). P. 1042–1047.
- Cani P. D., Amar J., Iglesias M. A. et al. Metabolic endotoxemia initiates obesity and insulin resistance // Diabetes. 2007. Vol. 56 (7). P. 1761–1772.
- Mathur R., Kim G., Morales W. et al. Intestinal Methanobrevibacter smithii but not total bacteria is related to diet-induced weight gain in rats // Obesity (Silver Spring). 2013. Vol. 2 (4). P. 748–754.
- Samuel B. S., Elizabeth E. H., Jill K. Manchester et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut // Proc Natl Acad Sci USA. 2007. Vol. 104 (25). P. 679–683.
- Patil D. P., Dhotre D. P., Chavan S. G. et al. Molecular analysis of gut microbiota in obesity among Indian individuals // J Biosci. 2012. Vol. 37 (4). P. 647–657.
- Zhang H., DiBaise J. K., Zuccolo A. et al. Human gut microbiota in obesity and after gastric bypass // Proc Natl Acad Sci USA. 2009. Vol. 106 (7). P. 2365–2370.
- Gibson G. R., Cummings J. H., Macfarlane G. T. et al. Alternative pathways for hydrogen disposal during fermentation in the human colon // Gut. Vol. 31 (6). P. 679–683.
- Wang Y. C., McPherson K., Marsh T. et al. Health and economic burden of the projected obesity trends in the USA and the UK // Lancet. 2011. Vol. 378 (7464). P. 541–546.
- Cesario V., Di Rienzo T. A., Campanale M. et al. Methane intestinal production and poor metabolic control in type I diabetes complicated by autonomic neuropathy // Minerva Endocrinol. 2014. Vol. 39 (3). Р. 201–207.
А. А. Голоктионова
А. С. Исаева, кандидат медицинских наук
ФГБОУ ВО ОмГМУ Минздрава России, Омск
1 Контактная информация: v_akhmedov@mail.ru
DOI: 10.26295/OS.2019.95.67.014
Ожирение и микробиота кишечника/ В. А. Ахмедов, А. А. Голоктионова, А. С. Исаева
Для цитирования: Лечащий врач № 7/2019; Номера страниц в выпуске: 68-71
Теги: метаболический синдром, индекс массы тела, ферментация, метаболизм
Купить номер с этой статьей в pdf