Метаболизм жирных кислот и инсулиносекреция у детей при сахарном диабете 1 типа и его осложнениях

Изучение состояния углеводного и липидного обменов у 47 детей и подростков, больных сахарным диабетом 1 типа, показало прогрессирующее снижение остаточной инсулиносекреции и инсулинсвязывающей активности лимфоцитов на фоне нарушения метаболизма жирных кис

Тяжесть течения у детей и подростков сахарного диабета (СД) 1 типа с быстрым развитием гипоксии и других диабетических осложнений свидетельствует о недостаточной ясности основных вопросов патогенеза данного заболевания, связанных с инсулиносекрецией и эффективностью действия инсулина при проведении терапии гормоном. Следовательно, СД 1 типа у детей требует разработки ранних способов диагностики патологии для проведения быстрой, адекватной коррекции гипоксии и развивающихся гормонально-метаболических нарушений с целью профилактики прогрессирования тяжести болезни. В частности, необходимо раньше выявить причину и особенности патогенеза лабильного течения СД с быстрым развитием тяжелых диабетических осложнений.

Известно, что причиной развития СД является недостаточная эффективность действия инсулина, вызванная при СД 1 типа нарушением инсулиносекреции вплоть до абсолютной ее недостаточности [1–3]. Человеческая поджелудочная железа содержит от 1 до 3 млн инсулиновых островков, что составляет 1% всей массы панкреатической ткани. Островок содержит 3000–5000 клеток, 70% из которых являются бета-клетками. Каждая бета-клетка имеет 10 000 секреторных гранул, которые содержат кристаллы инсулина. Инсулин синтезируется с С-пептидом, по уровню которого можно судить о синтезе и последующей секреции эндогенного инсулина у больных, получающих инсулинотерапию. Механизм инициирования сигнала для освобождения инсулина начинается с взаимодействия глюкозы со специфическим рецептором в бета-клетке, включая механизм распознавания глюкозы клеткой и передачи ее стимулирующего действия на систему цАМФ, ионы Са2+ и клеточные органеллы, из которых происходит освобождение гормона. При диабете нарушается первая фаза мультипликационной модели: инициирование сигнала, вызывающего секрецию гормона [4–6].

Литературные данные по изучению состояния инсулиносекреции при СД 1 типа разноречивы [5, 7–9]. Роль полиненасыщенных жирных кислот (ПННЖК) у детей и подростков при СД 1 типа недостаточно изучена.

Целью данной работы является оценка состояния метаболизма жирных кислот, инсулиносекреции и некоторых метаболических параметров у детей, больных сахарным диабетом 1 типа, осложняющимся развитием гипоксии и других нарушений.

Материал и методы исследования

Под нашим наблюдением находилось 47 детей и подростков, больных СД 1 типа, в возрасте от 3 до 18 лет. Из них у 27 детей на фоне СД 1 типа были обнаружены гастрит, гастродуоденит и нарушение кишечного всасывания и другие нарушения. Все дети получали общепринятую комплексную терапию, препараты инсулина. У большинства из них было лабильное течение заболевания. 10 детей без эндокринной патологии служили контролем. Так как при обследовании больных с помощью известных методов не у всех диагностируются микроангиопатии и специфические диабетические осложнения, выявленные нарушения мы объединяли под термином «диабетические осложнения».

Кровь из вены у больных брали утром натощак и через 1 час после завтрака с предварительным введением инсулина. Иммунореактивный инсулин (ИРИ) (ИРИ) и С-пептид определяли с помощью радиоиммунологических методов стандартными наборами фирм Сea Ire Sorin и Byk-Mallinckrodt. Содержание гликированного гемоглобина (HbA1), образование которого в организме зависит от средней концентрации глюкозы в эритроцитах в течение 2–3 месяцев, предшествующих исследованию, определяли с помощью метода электроэндоосмоса на электрофорезной системе (фирма Corning). Активность инсулиновых рецепторов исследовали по связыванию 125J-инсулина с лимфоцитами по ранее описанному нами методу [4]. Концентрацию лактата, пирувата и других биохимических параметров крови определяли с помощью наборов фирмы Boehringer. Применяли современные спектрофотометрические методы, а также метод газожидкостной хроматографии с масс-спектрометрией (ГХ/МС) «TraceGCUltraITQ 900» (ThermoScientific, США, 2009). Прибор калибровали стандартными смесями метиловых эфиров ЖК фирмы Sigma (США). Обсчет и идентификацию пиков проводили с помощью программно-аппаратного комплекса «AnalyticaforWindows» с использованием «IBMPentiumIV 1800». Программное обеспечение для обработки данных осуществляли: Xcalibur (Thermo); спектральные библиотеки: Mainlib; Microsoft Excel 2010. Цифровой материал обрабатывали методом вариационной статистики, с использованием t-критерия Стьюдента.

Данное исследование одобрено комитетом по этике РНИМУ им. Н. И. Пирогова. Дети и их родители давали информированное согласие на участие в данном исследовании.

Результаты и обсуждение

Результаты исследования свидетельствуют о резком нарушении углеводного и липидного обменов как при начальном диабете, так и при длительном течении болезни (табл. 1). Отмечается выраженная гипергликемия (p < 0,01) независимо от длительности течения СД, но особенно значительная при начальной форме диабета, где концентрация лактата и пирувата намного выше по сравнению с контрольной группой, что приводит к сдвигу кислотно-щелочного равновесия в сторону метаболического ацидоза (снижение pH c 7,45 ± 0,01 до 7,3 ± 0,01, p < 0,05). Гиперлипидемия сопровождалась выраженной гиперхолестеринемией, особенно значительной в группе «Начальный диабет» (p < 0,01).

При начальном СД у обследованных больных после завтрака, в фазе декомпенсации процесса отмечена тенденция к снижению уровня С-пептида по сравнению с больными в фазе компенсации (табл. 2), т. е. с нарастанием тяжести состояния больного инсулиносекреция снижается. Увеличение уровня ИРИ после завтрака связано с введением экзогенного инсулина больным.

Тенденция к более значительному снижению инсулиносекреции отмечена у детей и подростков с ранним развитием гипоксии и других диабетических осложнений, т. е. при тяжелом течении болезни. Следует отметить, что у больных с тяжелым течением СД 1 типа имеет место сочетание периферической гиперинсулинемии со значительно сниженной инсулиносекрециией на фоне введения более высокой дозы инсулина.

В фазе компенсации у таких больных уровень ИРИ в периферических венах оставался высоким, что свидетельствует о меньшей эффективности у них вводимой дозы инсулина, необходимого для относительной нормализации углеводного обмена, чем у больных без осложнений. Несмотря на нормогликемию натощак, у многих из этих больных отмечались значительные колебания глюкозы в течение суток. Совершенно очевидно, что необходимо предупреждать торможение инсулиносекреции, часто имеющее место при скрытых гипогликемиях вследствие передозировки инсулина, способствующей развитию инсулинорезистентности.

Исследование состояния инсулиновых рецепторов показало, что у больных с лабильным течением СД 1 типа и значительным снижением инсулиносекреции имеется тенденция к снижению инсулинсвязывающей активности (ИСА) лимфоцитами. ИСА в лимфоцитах у таких детей составляла 31,61 ± 3,9%; в контрольной группе — 47, 9 ± 5,9% (p < 0,01). Совершенно очевидно, что прогрессирующее снижение остаточной инсулиносекреции у детей и подростков и развитие инсулинорезистентности являются факторами риска тяжелого течения СД 1 типа с быстрым развитием гипоксии и других диабетических осложнений. Следовательно, для профилактики ухудшения состояния больного с прогрессированием тяжести течения болезни необходимо учитывать наличие остаточной инсулиносекреции у больного и предупреждать передозировку лечебной дозы гормона.

Результаты исследования состояния метаболизма жирных кислот показали, что у детей и подростков с СД 1 типа отмечались увеличение суммарного содержания насыщенных жирных кислот (НЖК) и уменьшение суммарного содержания ненасыщенных жирных кислот (ННЖК) по сравнению с аналогичными показателями в контрольной группе; наиболее выраженные изменения отмечались в группе больных с СД 1 типа с осложнениями (на 12,1% и 10,1% соответственно) (табл. 3). При подсчете коэффициента НЖК/ННЖК выявлено его повышение в группе больных с осложнениями (на 13,7%).

В пуле НЖК максимальное повышение отдельных фракций отмечается также у больных СД с осложнениями (на 19,4% по отношению к контрольным значениям). Анализ концентрации отдельных ПННЖК показал, что уровень a-линоленовой кислоты снизился, содержание арахидоновой кислоты, напротив, на 32% повысилось по отношению к контролю. Поэтому суммарный уровень ω6-ПННЖК был значительно повышен у детей и подростков при СД 1 типа, что привело к уменьшению коэффициента ω3-ПННЖК/ω6-ПННЖК по сравнению с контролем. У детей и подростков с СД 1 типа без осложнений соотношение Σω3-ПННЖК/Σω6-ПННЖК достоверно снизилось более чем в 2 раза (p < 0,05), а c осложнениями в 3,5 раза (p < 0,01). Приведенные в табл. 3 результаты свидетельствуют, что у пациентов с СД 1 типа с осложнениями установлены более выраженные нарушения состава жирных кислот сыворотки крови за счет группы ЖК ω-3 и ω-6.

При этом увеличение коэффициента НЖК/ННЖК максимально выражено в начале исследования. Эти изменения связаны, по-видимому, с тем, что при липолизе в первую очередь мобилизуются ННЖК, которые и окисляются первыми [10, 11]. Можно предположить, что этим объясняется также активация процессов перекисного окисления липидов у больных детей при СД 1 типа [12–15].

Таким образом, при нарушении инсулиносекреции у детей и подростков с СД 1 типа гипергликемия сопровождается нарушением углеводного и липидного обменов, особенно выраженным при начальном диабете, характеризующимся лактацидозом, со значительным повышением уровня холестерина, НЭЖК, снижением уровня ПННЖК, особенно семейства w-3. Нарушения метаболизма жирных кислот у детей и подростков с СД 1 типа сопровождаются гипоксией и другими осложнениями, особенно значительно у детей при начальном диабете.

Следовательно, своевременная диагностика и адекватная терапия СД 1 типа у детей и подростков позволит не только предупредить развитие гипоксии и других осложнений, но и улучшить состояние метаболического контроля.

Литература

  1. Дедов И. И. // Сахарный диабет. 2010, 3 (48), 6–13.
  2. Nordwall M., Fredriksson M., Ludvigsson J., Arnqvist H. J. Impact of Age of Onset, Puberty, and Glycemic Control Followed From Diagnosis on Incidence of Retinopathy in Type 1 Diabetes: The VISS Study // Diabetes care. 2019. Vol. 42, № 4, с. 609–617.
  3. Boden G. Free fatty acids and insulin secretion in humans // Curr. Diab. Re P. 2005. Vol. 5, № 3. P. 167–170.
  4. Микаелян Н. П., Терентьев А. А., Гурина А. Е., Смирнов В. В. Нарушений функций мембранорецепторного аппарата клеток крови детей, больных сахарным диабетом // Биомедицинская химия. 2011, т. 57, вып. 6, 642–649.
  5. Микаелян Н. П., Гурина А. Е., Нгуен Х. З., Терентьев А. А., Микаелян К. А. Взаимосвязь между процессом пероксидации липидов и антиоксидантной системы от жирно-кислотного состава крови у больных сахарным диабетом 1 типа и его осложнениях // РМЖ. 2014. С. 33–39.
  6. Delarue J., Magnan C. Free fatty acids and insulin resistance // Curr. Opin. Clin. Nutr. Metab. Care. 2007. Vol. 10, № 2. P. 142–148.
  7. Витебская А. В. Диагностика инсулинрезистентности у детей и подростков // Пробл. эндокр. 2006. Т. 52. № 6. С. 39–41.
  8. Дедов И. И., Кураева Т. Л., Петеркова В. А. Сахарный диабет у детей и подростков: руководство для врачей. М., 2008. С. 160.
  9. Микаелян Н. П., Гурина А. Е., Смирнов В. В., Микаелян А. В., Терентьев А. А. Влияние оксидативного стресса на состояние инсулиносекреции и инсулинсвязывающей активности клеток крови при сахарном диабете и его осложнениях у детей // РМЖ. 2016, № 4, т. XXII. С. 189–193.
  10. Акмурзина В. А., Петряйкина Е. Е., Савельев С. В., Селищева А. А. Профиль неэтерифицированных жирных кислот плазмы детей с разными сроками сахарного диабета 1 типа // Биомедицинская химия. 2016; т. 62, № 2, с. 155–161.
  11. Микаелян Н. П., Кулаева И. О., Гурина А. Е., Терентьев А. А., Сайфуллин Р. Ф., Микаелян К. А. Активность процесса перекисного окисления липидов и состояние системы антиоксидантной защиты у больных сахарным диабетом 2-го типа // Вопросы биологической, медицинской и фармацевтической химии. 2013, № 4, с. 64–68.
  12. Rodríguez-Carrizalez A. D., Castellanos-González J. A., Martínez-Romero E. C., Miller-Arrevillaga G., Villa-Hernández D., Hernández-Godínez P. P., Ortiz G. G., Pacheco-Moisés F. P., Cardona-Muñoz E. G., Miranda-Díaz A. G. Oxidants, antioxidants and mitochondrial function in non-proliferative diabeticretinopathy // J Diabetes. 2014; 6 (2): 167–175.
  13. Апухтин А. Ф., Стаценко М. Е., Инина Л. И. Сахароснижающий эффект ω3-полиненасыщенных жирных кислот у больных сахарным диабетом // Профилактическая медицина. 2012; 15 (6): 50–56.
  14. Древаль А. В. Лечение сахарного диабета и сопутствующих заболеваний. М., 2010. 352 с.
  15. Mukhopadhyay S., Bhattacharya B. Association of hyperglycemia mediated increased advanced glycation and erythrocyte antioxidant enzyme activity in different stages of diabetic retinopathy // Diabetes Res Clin Pract. 2013; 100 (3): 376–384.

Н. П. Микаелян*, 1, доктор биологических наук, профессор
А. В. Шестопалов*, доктор медицинских наук, профессор
А. В. Микаелян**, кандидат медицинских наук
А. Е. Гурина*, кандидат медицинских наук
В. В. Смирнов*, доктор медицинских наук, профессор

* ФГБОУ ВО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва
** ГБУЗ МО МОНИКИ им. М. Ф. Владимирского, Москва

1 Контактная информация: ninmik@yandex.ru

DOI: 10.26295/OS.2019.87.77.005

Метаболизм жирных кислот и инсулиносекреция у детей при сахарном диабете 1 типа и его осложнениях/ Н. П. Микаелян, А. В. Шестопалов, А. В. Микаелян, А. Е. Гурина, В. В. Смирнов
Для цитирования: Лечащий врач № 6/2019; Номера страниц в выпуске: 24-26
Теги: дети, подростки, липидный обмен, сахарный диабет

Купить номер с этой статьей в pdf

Все новости и обзоры - в нашем канале на «Яндекс.Дзене». Подписывайтесь

Статьи по теме

Смотреть всё
Ошибка загрузки данных